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Abstract—Dictionary-based string matching (DBSM) is a crit-
ical component of Deep Packet Inspection (DPI), where thou-
sands of malicious patterns are matched against high-bandwidth
network traffic. Deterministic finite automata constructed with
the Aho-Corasick algorithm (AC-DFA) have been widely used for
solving this problem. However, the state transition table (STT) of
a large-scale DBSM AC-DFA can span hundreds of megabytes
of system memory, whose limited bandwidth and long latency
could become the performance bottleneck We propose a novel
partitioning algorithm which converts an AC-DFA into a "head"
and a "body" parts. The head part behaves as a traditional AC-
DFA that matches the pattern prefixes up to a predefined length;
the body part extends any head match to the full pattern length
in parallel body-tree traversals. Taking advantage of the SIMD
instructions in modern x86-64 multi-core processors, we design
compact and efficient data structures packing multi-path and
multi-stride pattern segments in the body-tree. Compared with
an optimized AC-DFA solution, our head-body matching (HBM)
implementation achieves 1.2x to 3x throughput performance
when the input match (attack) ratio varies from 2% to 32%,
respectively. Our HBM data structure is over 20x smaller than a
fully-populated AC-DFA for both Snort and ClamAV dictionaries.
The aggregated throughput of our HBM approach scales almost
7x with 8 threads to over 10 Gbps in a dual-socket quad-core
Opteron (Shanghai) server.

Index Terms—String matching; SIMD; multi-core processor;
DFA; NFA; tree topology; multi-stride tree; intrusion detection;
virus scanning

I. INTRODUCTION

Deep packet inspection (DPI) is a critical component of
network security systems where the contents of the network
traffic are continuously examined. Examples include network
intrusion detection [1], virus scanning [2] and content filtering
[3]. Dictionary-based string matching (DBSM) is the most
widely-used pattern matching mechanism used by DPI to
match an input stream against a large number of strings. Due
to the explosive growth of network bandwidth and number of
malicious attacks, DBSM has become a major performance
bottleneck in DPI systems [4].

From an architecture point of view, DBSM solutions can
be categorized into two main groups: (1) hardware designs on
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ASIC or FPGAs [5], [6], [7], [8], [9], [4], [10], [11]; and (2)
software designs on multi-core systems [12], [13], [14]. While
implementing DBSM in software may not produce the highest
performance, it has several critical advantages:

Modularity A DBSM solution is usually part of a more
complex DPI system. Implementing DBSM as a
software module for multi-core processors makes
it easier to integrate DBSM with the rest of the
DPI system.

Extensibility A processor-based system is more flexible and
extensible than a piece of hardware. For example,
the memory size and network bandwidth can
be easily upgraded in many cases with a server
reboot.

Portability The same (multi-threaded) software executable
can run on processors with various number of
cores or cache sizes. Its performance can usually
be improved substantially by simply upgrading the
processor and without changing the source code.

A similar but more powerful pattern matching mechanism is
the regular expression matching (REM). While REM can be
regarded as a superset problem to DBSM, in this study we
focus only on DBSM on multi-core systems for three reasons.
First, DBSM is used more widely than REM. A larger number
of DPI rules utilize only DBSM together with other higher-
level directives. For those rules that do require REM, DBSM
is usually also used in the pre-filtering process.

Second, the performance of existing DBSM solutions on
multi-core systems still leave much to be desired. In [13],
the GPU-accelerated solution achieved 2.3 Gbps against 4000
random strings. In [15], the dual Cell B.E. system achieved
4.5 Gbps with (or 3.5 Gbps without) a-posteriori knowledge
of the input. In [14], a throughput of 7.5 Gbps was achieved
using 32 processors in a Cray XMT supercomputer. There
is yet a cost-efficient DBSM solution capable of matching
10 Gbps traffic against several thousand strings on a multi-
core platform.

Third, although REM performance on multi-core systems is
generally very poor (between 30 to 300 Mbps as in [16]), high-



performance REM solutions achieving over 5 Gbps matching
throughput against thousands of regular expressions already
exist with FPGA acceleration [17], [18]. Given that the state-
of-the-art performance between REM and DBSM differs less
than 2x in hardware but almost 20x in software (with DBSM
being the higher of both), we are not sure the software/multi-
core platform is a good choice for REM.

The Aho-Corasick algorithm, which compiles a dictionary
into a deterministic finite automaton (AC-DFA), is a widely-
used technique for solving DBSM. An AC-DFA processes the
characters in the input stream and reports a pattern match
when a “matching state” is reached. On a multi-core system,
DBSM using AC-DFA usually gives good throughput when
there is none or few pattern match in the input. However,
due to increased cache and memory subsystem pressures, the
throughput drops quickly when the input stream consists of a
higher ratio of matching patterns. This can become a denial-of-
service (DoS) opportunity in the network security applications
that utilize the DBSM.

Our goal in this study is to analyze and improve the
performance of AC-DFA on multi-core systems under all
scenarios. Specifically, our contributions include:

1) We demonstrate the dependency between throughput and
input match ratio of AC-DFA on multi-core systems. We
show that as small as a 5% match ratio in the input
stream can cut the throughput by half.

2) We propose the head-body partitioning algorithm which
converts an AC-DFA into a small “head” DFA and a
compact “body” NFA effectively processing in parallel.
The head DFA is made small so that it enjoys better
cache performance, whereas the body NFA is made
compact and simple to allow fast matching.

3) We design a compact data structure for the body NFA,
taking advantage the processor’s cache structure and
SIMD instructions. The design is suitable for x86-64
compatible processors from both AMD and Intel.

4) We implement, experiment and analyze our head-body
matching (HBM) modules with various configurations
on x86-64 compatible processors.

Compared with an optimized plain AC-DFA solution, our
head-body matching (HBM) approach achieves 1.2x to 3x
throughput performance under 2% to 32% input match ratios,
respectively, while using 20x less memory. The throughput of
our HBM scales almost linearly to 6.8x running on a dual-
socket quad-core Opteron (Shanghai) system.

Section II gives the background of the Aho-Corasick algo-
rithm and the related work. In Section III we give the motiva-
tion, formal description and theoretical performance analysis
of the head-body DBSM. Section IV describes the design of
the head DFA (H-DFA) and body NFA (B-NFA) modules. In
Section V we evaluate the performance of HBM under various
configurations and scenarios. Section VI discusses possible
directions for future work, while Section VII concludes the
paper.

II. BACKGROUND

A. The Aho-Corasick Algorithm

Matching high throughput input data against a large dictio-
nary can be both compute and memory intensive. The Aho-
Corasick algorithm[19] has been used widely to minimize the
computation complexity of dictionary-based string matching
(DBSM) by constructing a deterministic finite automaton (AC-
DFA) that matches the input against a specific dictionary.
Algorithmically, the AC-DFA has computation complexity
equal to O (L), where L is the total length of the data input
and independent of the size of the dictionary.

The Aho-Corasick algorithm consists of 3 steps. It first
constructs a dictionary tree using the entire set of dictionary
strings. The set of states Q in the dictionary tree will be the
set of states in the final DFA, with the tree root q0 being the
start state. Each character c ∈ Σ in the dictionary, Σ being
the dictionary’s alphabet, corresponds to a (labeled) tree edge
between a parent state qp and a child state qc. Such a tree edge
is described by the goto function, g (qp, c) = qc. Each string
of length l in the dictionary corresponds to the path from q0
to a match state at depth l.

Given a dictionary tree as described above, a failure function
maps every tree state q ∈ Q to its failure state q′ ∈ Q such
that the path from q0 to q′ is the longest proper suffix possible
of the path from q0 to q. Let λ (q) be the depth of q in the
dictionary tree, it follows that λ (q′) < λ (q) if q′ is the failure
state of q.

Lastly, a transition function maps each pair of
(q ∈ Q, c ∈ Σ) to a target state q” ∈ Q. If there is a
valid qc where g (q, c) = qc, then q” is set to qc; otherwise,
q” is set to the transition function of q′ (failure state of q)
through label c.

Definition 1: An AC-DFA is a deterministic finite automa-
ton (DFA) constructed from a dictionary of string patterns
using the Aho-Corasick algorithm [19]. It consists of an 8-
tuple, (Q,Σ, q0, δ,M, λ, g, f), described as follows:

1) A finite set of states Q
2) A finite set of labels, the alphabet Σ
3) A start state q0 ∈ Q
4) A transition function δ : Q× Σ→ Q
5) A set of match states M ⊆ {Q\q0}
6) A depth function λ : {Q\q0} → N and λ (q0) = 0
7) A goto function g : Q× Σ→ Q
8) A failure function f : Q→ Q

The first 5 elements in the list above are the same as those in
an ordinary DFA; the last 3 elements (λ, g and f ) are obtained
from the Aho-Corasick algorithm during the construction of
the AC-DFA.
The following definition extends the concept of failure func-
tion of AC-DFA to higher degrees.

Definition 2: The n-th degree failure function, fn (·) , n ∈
Z, of an AC-DFA is defined as the n-th power of the failure
function f (·). That is, f0 (q) = q and f i (q) = f

(
f i−1 (q)

)
.



B. Related Work

As discussed in Section III-A, DBSM with AC-DFA can
suffer from either large state transition table (STT) size or
high STT access cost. Much research has been done in recent
years to address these two problems. Most of the research
falls in the hardware category, where specialized AC-DFAs
are designed and targeted at ASIC or FPGA platforms [6],
[7], [8], [4], [20], [10]. Software-based DBSM solutions using
AC-DFA have been implemented in both ClamAV [2] and
Snort [1] for many years. However, due to the computation
and memory intensive nature, DBSM can account for 40%–
70% of the processing time of network intrusion detection
[21]. The performance bottleneck is further aggravated by the
increasing size of the dictionary, whose AC-DFA STT can no
longer fit into the processor cache.

In [12], [15], the authors improve the aggregated throughput
of AC-DFA over hundreds of threads, which are interleaved
at the instruction (assembly) level to hide the memory access
latency. In [14] the technique is brought up further to the
Cray XMT supercomputer, taking advantage of the massive
hardware multi-threading and memory bandwidth available.
In [13], a similar concept is used by implementing hundreds
of small AC-DFA on a massively parallel graphics multi-
processor (GPU). While these massively multi-threaded im-
plementations achieve a relatively high aggregated throughput,
their per-stream throughput (number of bytes matched per sec-
ond per input stream) remains very low. Furthermore, each of
these implementations is optimized for a particular processor
(CPU or GPU) microarchitecture, making the solution less
applicable for the generic multi-core system.

An alternative AC-DFA partitioning approach to this pa-
per was proposed in [6] and extended in [8], targeted for
FPGA/ASIC implementations. In both solutions, the root
and/or level-1 states are removed from the AC-DFA and
processed as an NFA; the remaining AC-DFA states are packed
and accessed in a hash table. The goal is to reduce the number
of (backward) transitions in the AC-DFA and to improve the
memory efficiency of the STT. On processor-based platforms,
however, the use of hash functions for every state transition
can be computationally expensive. The hashed state accesses
may also induce poor cache performance and introduce hash
conflicts.

III. HEAD-BODY PARTITIONING

A. Motivation

Algorithmically, dictionary-based string matching (DBSM)
can be solved by the Aho-Corasick deterministic finite au-
tomaton [19] (AC-DFA) with minimum asymptotic space and
time complexities.1 Practically, the state transition table (STT)
of an AC-DFA is either fully populated by all state transitions
(current state number + input character) and directly indexed
by the state number, or accessed through a hash function to a
(hash) table storing only the valid state transitions.

1Both the space and time complexities of an AC-DFA are linearly propor-
tional to the number of states in the AC-DFA.

0.01 0.1

match ratio

0

50

100

150

200

250

T
p
u
t 

M
B

/s

AC-DFA / Shanghai 2.6 GHz / Nthread=1

ClamAV type-0, 104452 states Snort 200906, 156300 states
ClamAV type-1, 484460 states

Figure 1. Single-threaded throughput of fully populated AC-DFA vs. match
ratio on 2.6 GHz AMD Opteron processor (Shanghai).

Both fully-populated and hash-table STTs, however, result
in poor memory and throughput performance for large-scale
DBSM on multi-core platforms:

1) When fully populated by all state transitions, the STT of
an AC-DFA can become excessively large and result in
poor cache efficiency. Assume an 8-bit (1-byte) alphabet
is used. Each state will have 28 = 256 out-going state
transitions, occupying 256× 4 = 1k bytes if 4 bytes are
used to encode each target state. Thus, a state-of-the-art
10 MB on-chip cache can hold less than 1000 states. On
the other hand, a large-scale DBSM with thousands of
patterns can easily require an AC-DFA with hundreds
of thousands of states.

2) When implemented as a hash table for better memory
efficiency, every access to the STT requires potentially
time-consuming hashing. Suppose it takes 30 CPU cy-
cles to compute the hashed address,2 plus 3 cycles to
detect hash conflicts and another 12 cycles to compare
the transition label and to set the next state variables. On
a 2.6 GHz processor core, the best-case performance will
be upper-limited by 2600/(30 + 15) ≈ 58 MBytes/sec,
even if zero hash conflict or cache miss occurs. (In
contrast, a non-hashed STT can sustain 2600/12 ≈
217 MBytes/sec best-case performance.)

For AC-DFA with a fully populated STT, a few percent of
match ratio (# pattern bytes / # total bytes) in the data input
can dramatically reduce the DBSM throughput to a fraction
of its best case values, as shown in Figure 1. Note that while
the absolute throughput depends heavily on the type and size
of the dictionary, the decreasing trend of throughput versus
match ratio is similar in all three cases.

On the other hand, for AC-DFA with a hash table STT, the
DBSM throughput is upper-limited by a relatively low value
(< 60 MB/s), and can be significantly lower when the input
stream continually cause hash conflicts. Both approaches result

2A fast hash table lookup function can be found at
http://burtleburtle.net/bob/hash/doobs.html, where 30+ clock cycles is
needed per hash table access in the best case.



in poor overall performance and create opportunities for the
denial-of-service (DoS) type of attacks.

To counter these performance bottlenecks, we propose par-
titioning the AC-DFA into two parts: a small (in terms of
number of states) “head” which constantly filters the input
stream for potential pattern matches, and a much larger but
more compact “body” which quickly finds out any pattern
match from the “head” output. The idea is to make the head
part small so it may be fully-populated, and to make the body
part simple so it can be packed and accessed efficiently without
the use of expensive hashing.

B. Construction of H-DFA and B-NFA

The head-body partitioning consists of the construction of
the head DFA (H-DFA) and the body NFA (B-NFA) from an
Aho-Corasick DFA (AC-DFA). We will first describe the H-
DFA construction. Let S be the dictionary (a set of strings)
used to construct the AC-DFA. We say P is a set of compatible
prefixes of S if P consists of a set of prefix strings, one of
every string in S, where no string in P that is a proper prefix
in S, is also a proper suffix of another string in P .

Definition 3: A set of compatible prefixes P of the dictio-
nary S is defined as follows:

∀p ∈ P : ∃s ∈ S, i ∈ N 3 p = Prefix (s, i)
∀s ∈ S : ∃p ∈ P, i ∈ N 3 p = Prefix (s, i)

∀p1, p2 ∈ P, s ∈ S : p1 ∈ Prefix (s, ∗)⇒ p1 /∈ Suffix (p2, ∗)

where Prefix (s, i) is the length-i prefix of s; Prefix (s, ∗) and
Suffix (s, ∗) are the set of proper prefixes and suffixes of s,
respectively.

Proposition 1: A simple way to obtain a set of compatible
prefixes P from an arbitrary dictionary S is as follows:

1) Start with an empty P ; decide a head length lH .
2) For each string s ∈ S,

a) If length (s) > lH , then add Prefix (s, lH) into P .
b) If length (s) ≤ lH , then add s itself into P .

3) The resulting P is a set of compatible prefixes of S.
Proof: All strings in P have the same length lH except

those that are not proper prefixes of some string in S. Thus
all requirements of Definition 3 are satisfied and P is a set of
compatible prefixes of S.
After finding P , the H-DFA can be constructed by running
the Aho-Corasick algorithm on P .

Definition 4: Given an AC-DFA (Q,Σ, q0, δ,M, λ, g, f),
a head DFA (H-DFA) of the AC-DFA is a 6-tuple,
(QH ,Σ, q0, δH ,MH , QR), consisting of the following:

1) The same alphabet Σ as that of the AC-DFA
2) The same start state q0 as that of the AC-DFA
3) A finite set of head states QH ⊂ Q, such that
∀qa ∈ QH : qb ∈ ShortestPath {q0, qa} ⇒ qb ∈ QH

4) A head transition function δH : QH × Σ→ QH

5) A finite set of head matches MH = {QH ∩M}
6) A finite set of body roots QR ⊂ {QH\q0}, such that
∀q ∈ QR : g (q, ∗) 6= φ and g (q, ∗) * QH

∀ {qa, qb} ∈ QR, i ∈ N : qa 6= f i (qb) and qb 6= f i (qa)

where ShortestPath {q0, q} is the set of states on the shortest
path from q0 to q in the AC-DFA, and g (q, ∗) is the set of
possible target states of the goto function at state q.
Note that the first 5 items above specify a DFA, while the last
item requires the DFA to be constructed from a compatible
set of prefixes. This requirement guarantees that no two body
roots can be reached at the same time by any input stream;
i.e., it guarantees the uniqueness of any B-NFA invocation by
the H-DFA.

Next we describe the construction of the B-NFA. Let P
be a set of compatible prefixes of S. We say T is the set of
compatible suffixes for P with respect to S if concatenating
every string in P by a corresponding string in T produces the
dictionary S.

Definition 5: Given a dictionary S and a set of compatible
prefixes P of S, a set of strings T is called the set of
compatible suffixes for P with respect to S if and only if

∀s ∈ S : ∃p ∈ P, t ∈ T 3 s = p · t

where p · t means the concatenation of p and t.
Given an AC-DFA constructed from a dictionary S and an
H-DFA constructed from some compatible prefixes P of S,
the corresponding B-NFA can be constructed by extending
the set of body roots of the H-DFA by the strings in T , where
T is the set of compatible suffixes for P with respect to S.
This results in a multi-tree data structure for the B-NFA, as
described below.

Definition 6: Given an AC-DFA (Q,Σ, q0, δ,M, λ, g, f)
and an H-DFA (QH ,Σ, q0, δH ,MH , QR), the corresponding
body NFA (B-NFA) is a 5-tuple, (QB , QR,Σ, gB ,MB), con-
sisting of the following:

1) The same alphabet Σ as that of the AC-DFA
2) The same set of body roots QR as that of the H-DFA
3) A finite set of body states QB = {Q\QH} ∪QR

4) A body goto function gB : QB × Σ→ {QB\QR} and
∀q ∈ QB , c ∈ Σ : gB (q, c) = q′ ⇒ g (q, c) = q′

5) A finite set of body matches MB = {M\MH}
Topologically, the B-NFA described above consists of a num-
ber of body-trees, each headed by a body root in QR. Every
body state represents a node in exactly one of the body-trees
and is reachable only from the root of that body-tree through
a series of goto functions (i.e., forward AC-DFA transitions).

The operations of H-DFA and B-NFA can be outlined as
follows. The H-DFA receives a stream of data input, starting
at state q0, and makes state transitions just like an ordinary
AC-DFA. Whenever a body root is reached in the H-DFA,
however, the body root and the input position are recorded
and sent to the B-NFA to invoke a body matching. Starting
from the body root, the B-NFA matches the subsequent data
input against the labels of a series of goto functions in the
body-tree traversal. The body matching terminates when the
goto function does not produce a valid next state for the next
input character. Concurrent to the body matching, the H-DFA
continues to process the subsequent data input and invokes a
next body matching if another next body root is reached, even
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Figure 2. An example AC-DFA.
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Figure 3. The head (left) and body (right) parts for the example AC-DFA.

before any (previous) body matching terminates. Any head or
body matches visited during the operations above are recorded
and reported as match output.

C. Illustrative Example

Given a dictionary S = {aril, act, account,
interact, illustrate, ill, counting, counter,
coincide} with the Roman alphabet, the Aho-Corasick DFA
(AC-DFA) can be constructed as shown in Figure 2. For clarity,
we do not show transitions back to states at depth 0 or depth
1. We also omit the labels on the cross transitions (gray lines)
since they are the same as the forward transitions that reach
the same target states. The match states (upon which a string
match is found) are represented by double-circles.

The AC-DFA can be partitioned into a head part and a body
part, as shown in Figure 3. The head part consists of an Aho-
Corasick DFA built upon a set of prefixes P of S, P = {aril,
act, acco, inte, illu, ill, coun, coun, coin}. In this
example, P is obtained simply by taking all length-4 prefixes
of S. For those strings in S shorter than 4 characters, the string
itself is put in P . The resulting head DFA (H-DFA) is shown
on the left side of Figure 3. Note that a few states in the H-
DFA are shaded: they are the body roots, which represents
states after which a remaining suffix should follow.

The body part is constructed by extending the body roots
by the remaining suffixes in multiple body-tree structures, as
shown on the right side of Figure 3. Note that there is a one-
to-one mapping from the body roots in the head part to the

body-trees in the body part.
The string matching begins at the head part as a sequence of

ordinary DFA transitions. Assume the input stream consist of
“accountillustrate”. The state transitions in the head
part will be 0 a→ 2 c→ 7 c→ 11 o→ 19 u→ 9 n→ 21 t→ 0 i→
1 l→ 4 l→ 15 u→ 17 s→ 0 . . . a→ 2 t→ 0 e→ 0. At each of the
states 19, 21, and 17, the corresponding body-tree in the body
part will be invoked to match the following input. Note that
both “account” and “illustrate” will be matched in the
body part, while “ill” will be matched in the head part.

Although a transition is made from H-DFA to B-NFA
whenever a body root is reached, no transition is possible from
B-NFA back to H-DFA. In fact, due to its non-deterministic
nature, the B-NFA does not have any backward or cross-tree
transition at all. As discussed in Section IV-C, this “forward-
only” property of B-NFA allows the body part to be stored
compactly and accessed efficiently in a cache-friendly data
structure.

As can be seen in the example, the main point of the head-
body partitioning is to reduce the AC-DFA into a small head
DFA and a set of simple body-trees. The head DFA can be
small enough to achieve good processor cache locality, while
the simple structures of the body-trees can be exploited for
both processing and storage efficiency.

D. Head-Body Performance Analysis

For convenience and clarity, whenever not explicitly stated
in this section, we always assume the following definitions:
• Aho-Corasick DFA, AC-DFA: (Q,Σ, q0, δ,M, λ, g, f)
• Head DFA, H-DFA: (QH ,Σ, q0, δH ,MH , QR)
• Body NFA, B-NFA: (QB , QR,Σ, gB ,MB)
1) Length of Failure Chains: In B-NFA, multiple matching

instances can be active (each invoked by an active body root
in H-DFA) concurrently while the H-DFA is running. Since
the time complexity of the head part (H-DFA) is the same as
any DFA, the additional processing of the body part makes
DBSM with the head-body approach algorithmically more
complex than the AC-DFA. In this subsection we prove that
the complexity of the B-NFA is bounded by the maximum
length of the failure chains that completely reside within the
B-NFA.

Definition 7: The failure chain of length n from state q ∈ Q
of an AC-DFA, Fn (q), consists of the set of states Fn (q) =
{q, f (q) , . . . , fn (q)}. Fn (q) is said to reside in the B-NFA
if and only if Fn (q) ⊂ QB .

Lemma 1: Two states in a B-NFA are active concurrently
if and only if they are in the same failure chain.

Proof: According to the original Aho-Corasick algorithm,
two states in an AC-DFA are connected by a failure function
if and only if they can be reached using the same input stream
starting at different offsets. Let the two states be qx ∈ QB and
qy ∈ QB , qx 6= qy . Since the same input stream, starting at
two different offsets, can reach both qx and qy concurrently, it
follows that there must be two active body matching (invoked
by the H-DFA separately), one for each of the reached states
qa and qb.



Direct applications of Lemma 1 to all adjacent pairs of states
in a failure chain gives the following result.

Corollary 1: The processing complexity of a B-NFA for
any input character is upper bounded by the maximum length
of the failure chains that reside in the B-NFA.
Note that although algorithmically the complexity is bounded
by the maximum length of the failure chains, this worst-case
is rarely relevant due to the following reasons:

1) In order to continuously invoke the longest failure chain,
a small number of states must be repeatedly visited,
resulting in good state locality and fast processing speed
in both the head and the body parts.

2) Further analysis of the Snort dictionary shows that
nearly all the long (> 8) failure chains are caused by
a small number (< 100) of strings with shortly repeat-
ing patterns, such as “aaaaaa...” or {00 00 00 . . . }h.
These patterns can be extracted from the dictionary and
matched specially.

As shown in Figure 4, the number of failure chains decreases
sharply with the increasing length of the failure chain as well
as the depth of the body roots.
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Figure 4. Number of failure chains versus length above various depth in
Snort dictionary’s AC-DFA.

In practice, for a large dictionary with thousands of patterns,
the worst-case performance is induced when a large number
of states in many long failure chains are visited in turn,
causing not only high processing complexity but also poor
state locality. The severity of the worst case scenario can be
better estimated by the accumulated length of all failure chains.
A detailed model for the complexity of DBSM is out of the
scope of this paper. Instead, in Section V we experimentally
measure the performance of DBSM under various conditions
with both the head-body and the AC-DFA approaches.

2) State Out-degree: A good feature of the B-NFA is its
tree structure, versus a more generalized DFA structure of
the AC-DFA. One of the most important properties of a tree
structure is its out-degrees. Both the memory complexity to
store a tree and the time complexity to traverse a tree are
positively proportional to the out-degree of the tree nodes. In

the case of B-NFA, the out-degree of each state can be found
using the following definition.

Definition 8: The state out-degree, d (q) , of state q ∈ Q
is the number of possible target states of the goto function at
state q. That is, d (q) = |g (q, ∗)|.
As shown in Figure 5, the number of states with high out-
degrees decreases exponentially with respect to the state depth.
More than 95% of the states at depth 4 or higher have an out-
degree of 2 or less. This means that on the average, an AC-
DFA state at depth 4 or higher should require no more than 2
bytes for label storage or 2 operations for label comparison.
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Figure 5. Number of states versus state depth with various out-degrees in
Snort dictionary’s AC-DFA.

This finding shows that both fully-populated and hash-table
STTs are inefficient for storing and accessing the AC-DFA for
large-scale real-world DBSM (such as Snort). On the other
hand, the head-body partitioning can take advantage of this
out-degree statistics by storing the lower-depth states in a
fully-populated but relatively small head DFA, and the higher-
depth states in a compact body NFA.

3) Memory Efficiency: Due to the lack of “cross transi-
tions” in the tree structure of B-NFA, any state in the body-
tree can have only one previous (parent) state. A corollary to
this property is that all the next (children) states of a body
state can always be placed consecutively.

Thus, instead of performing a complex hash operation to
find the next state while risking the chance of hash conflict,
in a B-NFA the next (child) state address of any state can be
found by simply taking an non-negative offset to its first child.
This offset can be found by comparing the input character with
an ordered list of transition labels. Based on the discussion in
Section III-D2, a B-NFA state should on the average require no
more than 2 bytes for storing labels and 4 bytes for storing the
first next-state address, giving a memory efficiency 2 orders
better than the H-DFA and AC-DFA.

As is shown in Section IV-C, the memory efficiency can be
further improved by packing multiple body-tree paths into one
body-tree “branch,” taking advantage of the cache block size
and the single-instruction multiple-data (SIMD) instructions
on modern processors.



IV. DESIGN OF HBM

A. Overall Architecture

The top-level entity of our head-body implementation is the
head-body matching (HBM) module, which consists of a head
module as an H-DFA and a body module as a B-NFA.

Given a string dictionary, the main parameter to an HBM
module is the set of compatible prefixes to be used for the
H-DFA. In our implementation we use the simple method of
Proposition 1 to find the set of compatible prefixes, reducing
the parameter to a single prefix length value. This prefix length
determines the state depth of all the body roots, where the H-
DFA and the B-NFA interface with each other.

Although conceptually the H-DFA and the B-NFA run
in parallel, for programming simplicity the head and body
modules are executed serially (in a single program thread)
in our HBM module. Initially, the program processes the
input stream using the head module. Whenever a body root is
reached, the program records the body root’s state number and
the position of the next input character. It then branches to the
body module to match the subsequent data input beginning at
the reached body root. After the body module terminates, the
program returns to the head module, restores the previously
recorded state number (the body root), and continues the
matching from the recorded input position.

Our HBM module records both the state number and the in-
put character position of all the dictionary matches in a queue,
which grows dynamically to accommodate large number of
matches efficiently. The size of the queue is upper-bounded by
a preset value (12 million elements, for example), after which
it becomes a ring where the earliest elements are erased to
hold new insertions.

B. The Head Module

The head module consists of an H-DFA for the dictionary
and a pre-defined head length (the lH in Proposition 1). It is
implemented as a DFA with |QH | < 65536 = 216 states in a
fully-populated STT. Using the notations in Definition 4, there
are |QH | rows and |Σ| columns in the STT, one row for each
head state and one column for each input label.

The string matching is performed byte-wise, resulting in the
input width of 8 bits and the alphabet size of 28 = 256. The
size of the H-DFA’s STT is thus |QH | × 512 bytes, where
every next-state value occupies 2 bytes (16 bits) of storage.

The head length lH must be 3 (characters) or larger, up to
the maximum value where the number of head states remains
below 65536. That is,

3 ≤ lH ≤ max
l

(|s ∈ Q : λ (s) ≤ l| < 65536)

To make it easier to identify a match state (s ∈ MH ) and a
body root (s ∈ QR), we organize all head states into 3 ranges:

1) Non-match states
2) Match states
3) Body roots

A non-match state in the H-DFA can be neither a match state
nor a body root. On the other hand, a state can be both a

match state and a body root at the same time. This is resolved
by allowing an overlap between the range 2 and the range 3.
It takes two branches to identify what range(s) a state belongs
to in the H-DFA, compared to just one branch to find out the
state’s match status in an ordinary AC-DFA. This overhead
makes the H-DFA slightly slower than the AC-DFA in the
best case. The difference, however, is quite small on a modern
multi-core processor.

C. The Body Module

The body module consists of a number of body-trees each
headed by a body root. We design a simple yet compact data
structure to store the body-trees in blocks of 64 bytes, which
match the cache block size of most modern processors. Each
64-byte block is called a branch, which contains one or more
body paths of multiple bytes in length. The data structure,
shown in Table I, is described as follows:

Table I
THE BODY BRANCH DATA STRUCTURE.

0 1 2 3 4 5 6 7 8 9 a b c d e f
b d n next_state mat_mask misc_info

input_mask
path_labels[1]
path_labels[2]

branch width (b) Number of paths stored in the branch. Valid
values include 1, 2, 4, 8, 16, or 32.

stride size (d) Maximum stride of each path. Valid values
include 1, 2, 4, 8, 16, or 32.

max offset (n) Total number of paths that lead to a valid next
branch.

next_state State number of the first valid next branch.
mat_mask Bit-mask of dictionary pattern matches. One bit

for each byte in the path_labels vector.
misc_info Miscellaneous information about the branch.
input_mask Masking the input vector before comparing it to

the path_labels vector.
path_labels Up to 32 bytes of path labels containing from a

single 32-byte path to 32 one-byte labels.
Depending on the values of b (branch width) and d (stride
size) of a body branch, one of the 11 body functions is called
to match d characters from the input against the (up to) b paths
stored in the path_labels array. By design, the value of b×d
is either 16 or 32. If b × d = 16, then only path_labels[2]
is used for storing tree paths; if b × d = 32, then both
path_labels[1] and path_labels[2] are used for storing tree
paths. The input_mask is responsible of handling paths that
are shorter than the stride size of the branch. These shorter-
than-branch-stride paths always represent dictionary matches.

The matching is performed efficiently using the single-
instruction multiple-data (SIMD) instructions available on
modern processors (e.g., x86-64 compatible CPUs from both
AMD and Intel). In order to do so, the d input characters read
by the branch are first replicated b times to form an input
vector of the same length as the path_labels vector (either
16 or 32 bytes, depending on the value of b × d). Then a



number of SIMD instructions are performed on the input and
the path_labels vectors to obtain the following results:

1) All paths in the path_labels vectors that generate one
or more pattern matches for the dictionary (with the help
from the mat_mask bit-mask)

2) The offset, if any, of the path in the path_labels vector
that leads to a valid next branch

The first result above causes the body part to record the input
position and the matching states. The second result causes the
body part to traverse to the next body branch.

On the average, the processing in each body branch has
25–35 instructions (SIMD or not), taking 20–30 clock cycles
on a modern superscalar processor. While this is not much
faster than a hash table lookup, we note that the out-degree
of the body states are usually small, allowing each branch to
process multiple (up to 32) characters very often. Furthermore,
our B-NFA optimizations are applicable to all modern super-
scalar processor with SIMD capabilities, including all x86-64
compatible CPUs from AMD and Intel.

D. Parallelism on Multi-Core

To utilize all available cores in the multi-core platforms, we
exploit the data parallelism of DBSM to scale up the aggre-
gated throughput to multiple threads. To generate meaningful
and realistic results, we use multiple data input streams, one
for each thread, in separate memory storage. All threads share
the same dictionary data structure, although each thread may
(and usually will) access a different state due to the different
input streams they process. The aggregated throughput over
all parallel threads is used to measure the overall system
performance.

This parallel processing approach allows us to scale the
number of software threads easily to the number of cores in
a shared-memory multi-core system. While it is possible to
perform instruction-level interleaving as in [12] to hide the
memory access latency for both H-DFA and B-NFA, doing so
in an optimal way requires assembly-level manipulation of the
source code for each particular platform. Simple interleaving
in the C/C++ source level produces lower performance. Unlike
[12], our solution is not targeted at any particular platform. We
believe that future processor technologies such as hardware
multi-threading may be able to hide the memory latency more
efficiently (with respect to development effort).

V. PERFORMANCE EVALUATION

A. Environments and Datasets

We measure the performance of our head-body matching
(HBM) modules on both AMD Opteron and Intel Xeon
platforms. Table II compares the processor specifications. All
servers are equipped with 16 GB or more DDR2 667 MHz
main memory. Due to the space limit, we only show the results
on the two AMD processors (to compare performance between
two processor generations with the same system architecture).
However, we note that the performance results on Clovertown
is very similar to that on Barcelona, with slightly (2%–3%)

Table II
PROCESSORS FOR PERFORMANCE EVALUATION.

Barcelona Shanghai Clovertown
CPU Opteron 2350 Opteron 2382 Xeon 5335

# Cores 4 (8/server) 4 (8/server) 4 (8/server)
Cache 4 MB L2+L3 8 MB L2+L3 8 MB L2
Freq. 2.0 GHz 2.6 GHz 2.0 GHz

greater advantage towards HBM due to Clovertown’s larger
cache size.

The source code is compiled using GCC 4.2 and run on 64-
bit SuSE Linux (kernel version 2.6.18). We use either “gcc
-O2” or “g++ -O2” to compile the source codes, depending
on the language used in the source files.

We use three dictionaries from popular intrusion detec-
tion (Snort) and virus scanning (ClamAV) applications for
performance evaluation. Table III compares the statistics of
the dictionaries and the size of their state transition tables
(STT) when implemented as an AC-DFA and various HBM
configurations. The latest Snort dictionary as of June 2009
(Snort0906) consists of 8,673 words in 196,967 characters.
In the ClamAV “main.ndb” file, the type-0 strings (CAV-0)
consist of 1,444 words in 109,686 characters, whereas the
type-1 strings (CAV-1) consist of 5,225 words in 497,984
characters. The HBM-{1–4} rows correspond to the four HBM
configurations in Figure 6 and in Figure 7, respectively. The
values in the HBM rows describe the memory size used by
the respective H-DFA and B-NFA modules.

As shown in Table III, the HBM modules effectively
compact the dictionary into a much smaller memory than
the AC-DFA. The H-DFA is essentially a DFA with less
number of states (only the “head” of the AC-DFA), so its
memory size is directly proportional to the number of states
it contains. The B-NFA, on the other hand, compacts up to
32 single-character state transitions into a 64-byte memory
block, resulting in a memory footprint as small as 2 B/state.
In practice, the memory footprints of the B-NFA for these
real-world dictionaries vary from 2.5 B/state to 4 B/state.

As shown in Figure 1, the match ratio of the data input has a
great impact on the performance of the dictionary-based string
matching (DBSM) running on processors. In our experiments,
we control the match ratio by embedding the dictionary strings
randomly into an “innocent” data input template. For the Snort
dictionary, we use the plain text of the entire King James
Bible as the input stream template; for the ClamAV type-0
and type-1 dictionaries, we use the concatenation of all files
under /usr/bin in a typical Linux server installation.

A match ratio of 0.01 means the embedded dictionary
patterns amount to 1% of the input characters (for example,
there is a single 15-byte dictionary pattern in a 1500 B network
packet). This would represent an occasional occurrence of
intrusion-like pattern in the network traffic. A greater match
ratio, e.g., 0.3 or higher, would represent a performance-based
denial-of-service attack where 30% or more of the network
packets are sent by the attacker to slow down the system.



0.01 0.1

match ratio

0

30

60

90

120

150
T

pu
t M

B
/s

Snort 200906 Barcelona Nthread=1

hsize=6204
hsize=11100
hsize=16340
hsize=41706
size=156300

0.01 0.1

match ratio

0

30

60

90

120

150

T
pu

t M
B

/s

Snort 200906 Shanghai Nthread=1

hsize=6204
hsize=11100
hsize=16340
hsize=41706
size=156300

Figure 6. Throughput of AC-DFA and HBM with various head sizes for Snort0906 on Barcelona (left) and Shanghai (right).
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Table III
STATISTICS OF THE SNORT AND CLAMAV DICTIONARIES AND THE RESPECTIVE SIZES OF THE HBM AND AC-DFA STTS.

Snort0906 CAV-0 CAV-1
# strings 8,673 1,444 5,225
# chars 196,967 109,686 497,984

H-DFA size B-NFA size H-DFA size B-NFA size H-DFA size B-NFA size
HBM-1 3.0 MB 0.65 MB 3.0 MB 0.23 MB 3.8 MB 1.09 MB
HBM-2 5.5 MB 0.58 MB 5.4 MB 0.22 MB 8.3 MB 1.08 MB
HBM-3 8.0 MB 0.57 MB 9.7 MB 0.21 MB 18 MB 1.04 MB
HBM-4 20 MB 0.43 MB 32 MB 0.11 MB 30 MB 1.01 MB
AC-DFA 153 MB 102 MB 473 MB

B. Performance on Various Processors
Figure 6 shows the matching throughput versus match ratio

for the Snort dictionary. Four different H-DFA sizes (with
6,204 / 11,100 / 16,340 / 41,706 states) are used for four
HBM configuration, contrasted by an optimized AC-DFA with
total 156,300 states. We repeat the same set of experiments on
both the Barcelona-based and the Shanghai-based servers to
see how processor speed affects the throughput of DBSM with
AC-DFA and various HBM configurations.

All the HBM configurations (except “hsize = 6204”, or
HBM-1 in Table III) achieve higher matching throughput
than the AC-DFA for match ratios above 0.01. When the
H-DFA is too small, however, body matching is invoked
excessively even without any matched pattern in the input
stream, causing relatively lower HBM performance at low
match ratios. Increasing the H-DFA size greatly improves the
best-case throughput of HBM while only marginally decreases
the throughput when the system is under attack. Using a
“moderate” head size between 10 K to 20 K states, an HBM
module can achieve 1.2x to 3x the throughput of AC-DFA for
match ratios varying from 0.02 to 0.32.

Also note that HBM performs increasingly better than
AC-DFA on the faster Shanghai processor than on the
older Barcelona processor. Compared with AC-DFA, HBM’s
throughput performance depends more on the CPU processing
power than on the system memory latency. Since the speed
of processor increases at a much faster pace than that of
memory, we expect the DBSM throughput to scale better with
HBM than with AC-DFA to future generations of multi-core
processors.

While the on-chip cache of the Shanghai processor is twice
as large as the Barcelona processor, on both servers the HBM-
3 configuration in Table III (the “hsize = 163,400” label in
Figure 6) produces the best performance. This shows that al-
though head-body partitioning helps improve processor cache
performance, the throughput of HBM is not very sensitive to
the on-chip cache size.

C. Performance with Various Dictionaries
Figure 7 shows the matching throughput versus match ratio

of two dictionaries, ClamAV type-0 and ClamAV type-1.
These dictionaries have dramatically different sizes in terms
of both number of strings and number of characters.

While the absolute matching throughput in the two plots
in Figure 7 are very different (notice their different y-axis

scales), they both follow the same trend with increasing input
match ratio. All HBM configurations perform consistently
better than AC-DFA across the entire range (0.01–0.3) of input
match ratios. Furthermore, HBM enjoys greater performance
advantage over AC-DFA for the larger dictionary (ClamAV
type-1). This shows that the proposed head-body partitioning
effectively alleviates the cache pressure incurred by the large
STT access of the AC-DFA.

In general, to optimize throughput over all input match
ratios, we should use a relatively small H-DFA for a small
dictionary, and gradually increase the size of the H-DFA
when the dictionary becomes larger. Note that the “size” of a
dictionary depends on not only the total number of characters
but also the number of strings in the dictionary. For example,
although the number of characters in the Snort dictionary is
closer to that in the ClamAV type-0 dictionary, the relative
performance of various HBM configurations for Snort is more
similar to that for ClamAV type-1. Compared with the Snort
dictionary, ClamAV type-1 has almost 3 times the number
of characters (497,984 vs. 196,967), but a similar number of
strings (5,225 vs. 8,678).

D. Performance with Multiple Cores

Figure 8 shows the aggregated throughput scaling from
1 to 8 threads for the Snort dictionary. The AC-DFA is
compared with an HBM module configured with 16,340 head
states. Both AC-DFA and HBM scale well for all input match
ratios between 0.01 and 0.32. This implies that the throughput
reduction at high input match ratios is not due to insufficient
memory bandwidth but rather the long memory access latency
caused by higher cache miss rates.

We observed similarly good aggregated throughput scaling
for all three dictionaries with the HBM-{1,2,3} configurations
in Table III. Figure 9 shows the throughput scaling for match-
ing ClamAV type-0 with HBM-3 and ClamAV type-1 with
HBM-2, respectively. Due to space limitation, we could not
show all 9 possible cases. In all cases, the matching throughput
is penalized by less than 50% while the match ratio increases
over 30x (from 0.01 to 0.32).

The good throughput scaling of all HBM configurations also
shows that the performance of HBM is not sensitive to the
(effective) size of the on-chip cache, since four threads on the
same quad-core processor compete for the on-chip (level-3)
cache.
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Figure 9. Aggregated throughput of HBM for CAV-0 with 19,868 head states (left) and for CAV-1 with 17,079 head states (right).

VI. FUTURE WORK

Currently, the head-body partitioning is performed statically,
where the head part is bounded by a pre-defined depth value.
In general, the ending states (body roots) in the head part do
not need to have a constant or fixed depth value. One future
direction is to design an algorithm that efficiently constructs
a head part ending at “uneven” depths, to include a longer
prefix of the “hot” dictionary patterns.

Because both H-DFA and B-NFA can be made small to
a size comparable to the on-chip cache size, simultaneous
multi-threading (SMT) may effectively scale up the aggregated
throughput of the head-body approach. We are looking forward
to test our HBM implementations on systems with hardware
multi-threading support, such as Sun’s Niagara 2 and Intel’s
Nehalem processors.

VII. CONCLUSION

We proposed and formally defined the head-body partitioned
DBSM, which converts an AC-DFA into a small H-DFA and
a memory-efficient tree-structured B-NFA. The H-DFA gives
good cache performance on multi-core processors, while the
B-NFA allows cache-friendly multi-stride transitions utilizing
SIMD instructions. Unlike AC-DFA, large-scale DBSM with
our head-body partitioned approach does not suffer from
significant performance degradation when the match ratio
increases in the input stream. The head-body approach also
scales well to larger dictionaries and faster processors.
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